[1] 王文华, 陈峥立, 宋云. PT-对称算子的表示及非正交量子态的区分. 数学学报[J]. 2020. https://kns.cnki.net/kcms/detail/11.2038.O1.20200410.1426.043.html
[2] Qiangqiang Zhang, Zhengli Chen, FengruYuan, WenhuaWang. A Note of Coherence for Duality Quantum Computers Acting on Pure States. Internat. J. Theoret. Phys. 2018,57(12): 3795–3807.
[3] WenHua Wang, HuaiXin Cao, ZhengLi Chen, and Lie Wang. Quantitative conditions for time evolution in terms of the von Neumann equation. Science China Physics,Mechanics & Astonomy[J],2018,61(7):070312.
[4] Lili Wang, Zhengli Chen, WenhuaWang, Ling Lu. A Note on Quantum Coherence. Internat. J. Theoret. Phys. 2018,57 (3):771–779.
[5] Z. L. Chen, H. X. Cao and Z. H. Guo. C∗-algebra consisting of all g-Bessel sequencesin a Hilbert space. International Journal of Wavelets, Multiresolution and Information Processing[J]. 2017,15(1) :1750004(1-8)( DOI: 10.1142/S0219691317500047)
[6] 王文华,陈峥立,李玮.超算符的两种表示.数学物理学报[J].2017, 37A(4):607-614.
[7] Wenhua Wang,Huaixin Cao, Zhengli Chen.Adiabatic Approximation for the Evolution Generated by an A-uniformly Pseudo-hermitian Hamiltionian. Theoretical and Mathematical Physics[J], 2017,192(3): 1365–1379.
[8] Chen, Zhengli; Liang, Lili; Li, Haojing; Wang, Wenhua. Two generalized Wigner–Yanase skew information and their uncertainty relations. Quantum Information Processing[J], 2016, 15(12):5107–5118( doi:10.1007/s11128-016-1434-5).
[9] Chen, Zhengli; Liang, Lili; Li, Haojing; Wang, Wenhua. A generalized uncertainty relation. Internat. J. Theoret. Phys. 2015,54 (8):2644–2651.
[10] Cao, Huaixin; Chen, Zhengli; Li, Li; Yu, Baomin. An applicable approximation method and its application. Acta Math. Sci. Ser. B Engl. Ed. 2015, 35 (5):1189–1202.
[11] Gu,Caixing; Chen,Zhengli. A model for (n,p)-hypercontractions on Banach space. Indag. Math. (N.S.), 2015, 26 (3):485–494.
[12] Li, Hao Jing; Chen, Zheng Li; Liang, Li Li. Note on the Schrödinger uncertainty relation. (Chinese) J. Shandong Univ. Nat. Sci. 2014, 49 (6): 67–73.
[13] Huaixin Cao, Juncheng Yin, Zhihua Guo, Zhengli Chen,Local Lipschitz-αmappings and applications to sublinear expectations,Acta Mathematica Sinica-English Series,2014,30(5):844-860.
[14] Cao, Huai-Xin; Guo, Zhi-Hua; Chen, Zheng-Li. CPT-frames for non-Hermitian Hamiltonians. Commun. Theor. Phys. (Beijing) 2013, 60 (3): 328–334.
[15] 曹怀信, 郭志华, 陈峥立, 张坤利,效应代数的表示理论,中国科学:数学[J],2013,43(08):835-846。
[16] Huaixin Cao, Zhihua Guo, Zhengli Chen, Wenhua Wang,Quantitative sufficient conditions for adiabatic approximation,Science China Physics,Mechanics & Astonomy[J],2013,56(7):1401-1407。
[17] Huaixin Cao, Guilu Long, Zhihua Guo, Zhengli Chen,Mathematical theory of generalized duality quantum computers acting on vector-states,International Journal of Theoretical Physics[J],2013,52(4):1751-1767。
[18] Zhihua Guo, Huaixin Cao, Zhengli Chen,Distinguishing classical correlations from quantum correlations,J. Phys. A: Math. Theor. [J],2012,45(145301):1-15。
[19] Huaixin Cao, Zhengli Chen, Zhihua Guo, Fangguo Ren,Complex duality quantum computers acting on pure and mixed states,Science China Physics,Mechanics & Astonomy[J],2012,55(12):2452-2462。
[20] 曹怀信, 陈峥立, 郭志华, 张巧卫,效应代数的表示,中国科学:数学[J],2011,41(03):279-286。
[21] Zhihua Guo, Huaixin Cao, Zhengli Chen, Juncheng Yin,Operational properties and matrix representations of quantum measures,Chinese Sci Bull. [J],2011,56(16):1671-1678。
[22] Zheng-Li Chen, Huai-Xin Cao, Hong-ke Du. Some Properties of Quantum Probability [J]. Chinese Journal of Engineering Mathematics,2010,27(1):168-172.
[23] Huaixin Cao, Li Li, Zhengli Chen, Ye Zhang,Restricted allowable generalized quantum gates,Chinese Science Bulletin[J],2010,55(20):2122-2125。
[24] Zheng-Li Chen, Huai-Xin Cao, A Note on the extreme points of positive quantum operations, International Journal of Theoretical Physics[J]. 2009, 48(6): 1669-1671.
[25] 陆玲,曹怀信,陈峥立. 效应代数上态射的注记[J]. 数学学报,2009,52(5):957-960. 39(1):23-26.
[26] 曹怀信, 陈峥立. 关于Riesz函数演算的Lipschitz性质[J]. 数学学报, 2007, 50(2): 319-324.
[27] Yuan Li, Xiu-Hong Sun, and Zheng-Li Chen. Generalized infimum and sequential product of quantum effects [J]. Journal of Mathematical Physics,48, 102101 (2007), 1-9.