讲座人简介:
李声杰,教授,博士生导师。现为中国运筹学会数学规划分会常务理事、中国运筹学会决策科学分会常务理事、重庆市运筹学会副理事长、重庆市数学学会常务理事。2013年1月获得教育部自然科学二等奖(排名第一),2014至2018年连续五年分别入选数学学科Elsevier中国高被引学者榜单。国际学术期刊《Dynamics of Continuous, Discrete & Impulsive Systems-B》(DCDIS-B)、《Numerical Algebra, Control and Optimization》(NACO)和《Journal of Optimization》编委和《系统工程理论与实践》编委。主要从事多目标最优化、向量变分不等式以及向量平衡问题等方面的研究工作,包括解的存在性、最优性条件、对偶、解集映射的稳定性和灵敏性分析等研究,目前已发表SCI学术论文200余篇。
讲座简介:
In this talk, strong Karush/Kuhn-Tucker conditions are studied for smooth multiobjective optimization with inequality constraints. We introduce a new second-order regularity condition of Abadie type in terms of the second-order directional derivatives and then obtain a second-order strong Karush/Kuhn-Tucker necessary condition at a Borwein-properly efficient solution. Simultaneously, we also use an example to show that, if the Abadie type regularity condition is weakened to the Guignard type one, the second-order strong Karush/Kuhn-Tucker necessary condition may not hold. Finally, then we also apply the second-order strong Karush/Kuhn-Tucker conditions to derive a sufficient result for local Geoffrion-proper efficiency.